Publications

Page

[1] S. Berhanu, W.W. Comfort and J.D. Reid, Counting subgroups and topological group topologies, Paci c J. of Math 116 (1985), 217-241.

[2] S. Berhanu, Hypo-analytic pseudo-di erential operators, Proceedings of AMS 105 (1989), 582-588.

[3] S. Berhanu, Microlocal hypo-analyticity and hypo-analytic pseudodifferential operators, Proceedings of AMS 105 (1989), 594-602.

[4] S. Berhanu, Propagation of hypo-analyticity along bicharacteristics, Paci c J of Math 138 (1989), 221-232.

[5] S. Berhanu, An asymptotic formula for hypo-analytic pseudodi erential operators, Transactions of the AMS 322 (1990), 711-729.

[6] S. Berhanu, Microlocal Holmgren’s theorem for a class of hypo-analytic structures, Transactions of the AMS 323 (1991), 51-64.

[7] S. Berhanu, Propagation of singularities in a locally integrable structure, Michigan Journal of Math 40 (1993), 119-138.

[8] S. Berhanu and S. Chanillo, Boundedness of the FBI transform on Sobolev spaces and propagation of singularities, Communications in PDE 16 (1991), 1665-1686.

[9] S. Berhanu and S. Chanillo, Holder and Lp estimate for a local solution of @b at top degree, Journal of Functional Analysis 114 (1993), 232-256.

[10] S. Berhanu, Liouville’s theorem and the maximum modulus principle for a system of complex vector  fields, Communications in PDE 19 (1994), 1805-1827.

[11] S. Berhanu and G. Mendoza, Orbits and Global unique continuation for systems of vector  fields, Journal of Geometric Analysis 7 (1997), 173-194.

[12] S. Berhanu, Extreme points and the strong maximum principle for CR functions, Contemporary Math 205 (1997), 1-13.

[13] S. Berhanu and A. Meziani, On rotationally invariant vector  fields in the plane, Manuscripta Math. 89 (1996), 355-371.

[14] S. Berhanu and A. Meziani, Global properties of a class of planar vector  fields of infnite type, Communications in PDE 22 (1997), 99-142.

[15] S. Berhanu and I. Pesenson, The trace problem for vector  fields satisfying Hormander’s condition, Mathematische Zeitschrift 231 (1999), 103-122.

[16] S. Berhanu and G. Porru, Qualitative and quantitative estimates for large solutions to semilinear equations, Communications in Applied Analysis 4 (2000), 121-131.

[17] S. Berhanu, F. Gladiali and G. Porru, Qualitative properties of solutions to elliptic singular problems, Journal of Inequal. and Appl. 3 (1999), 313-330.

[18] S. Berhanu, J. Hounie and P. Santiago, A similarity principle for complex vector  fields and applications, Transactions of the AMS 353 (2000), 1661-1675.

[19] S. Berhanu and J. Hounie, Uniqueness for locally integrable solutions of overdetermined systems, Duke Math. Journal 105 (2000), 387-410.

[20] S. Berhanu and J. Hounie, An F. and M. Riesz theorem for planar vector fields, Mathematische Annalen 320 (2001), 463-485.

[21] S. Berhanu and J. Hounie, A strong uniqueness theorem for planar complex vector  fields, Bol. Soc. Bras. Mat. 32 (2001), 359-376.

[22] S. Berhanu and J. Hounie, On boundary properties of solutions of complex vector  fields, Journal of Functional Analysis 192 (2002), 446-490.

[23] S. Berhanu and J. Hounie, Traces and the F. and M. Riesz theorem for planar vector  fields, Annales de L’Institut Fourier 53 (2003), 1425-1460.

[24] S. Berhanu and J. Hounie, On boundary regularity for one-sided locally solvable vector  fields, Indiana University Mathematics Journal 52 (2003), 1447-1477.

[25] S. Berhanu, F. Cuccu and G. Porru, On the boundary behaviour, including second order effects, of solutions to singular elliptic problems, Acta Mathematics Sinica 23, No 3 (2007), 479-486.

[26] S. Berhanu and Ahmed Mohammed, A Harnack inequality for ODE solutions, The American Mathematical Monthly 112 (2005), 32-41.

[27] S. Berhanu and J. Hounie, The F. and M. Riesz property for vector  fields, Contemporary Math 368 (2005), 25-39.

[28] S. Berhanu and J. Hounie, An F. and M. Riesz theorem for a system of vector fields, Inventiones Mathematicae 162 (2005), 357-380.

[29] S. Berhanu and C.Wang, On the maximum principle and a notion of plurisub-harmonicity for abstract CR manifolds, Michigan Mathematical Journal, 55, Issue 1 (2007), 81-102.

[30] S. Berhanu and J. Hounie, On the F. and M. Riesz theorem on wedges with edges of class C1; , Math. Zeitschrift, 255 (2007), 161-175.

[31] Z. Adwan and S. Berhanu, Edge-of-the-wedge theory in involutive structures, The Asian Journal of Mathematics 11, Number 1 (2007), 1-18.

[32] S. Berhanu and J. Hounie, The Baouendi-Treves approximation theorem for continuous vector  fields, The Asian Journal of Mathematics 11, Number 1 (2007), 55-68.

 

[33]  S. Berhanu, On microlocal analyticity of solutions of first-order nonlinearPDE, Annales de l’Institut Fourier 59, Number 4 (2009), 1267–1290

[34]  S. Berhanu, On involutive systems of first-order nonlinear partial differentialequations, Trends in Mathematics, Birkhauser, (2010), 25–50.

[35]  S. Berhanu and J. Hounie, A Rudin-Carleson theorem for planar vector fields,Mathematische Annalen 347, Number 1 (2009), 95–110.

[36]  S. Berhanu and J. Hounie, A generalization of the Rudin-Carleson theorem, Advances in phase space analysis of partial differential equations, Birkhauser78, (2009), 37–57.

[37]  S. Berhanu and J. Hounie, A Generalization of Bochner’s Extension Theoremto Rough Tubes, Journal of Geometric Analysis, 21, Number 2 (2011), 455–475.

[38]  Z. Adwan and S. Berhanu, On microlocal analyticity and smoothness of solu-tions of first order nonlinear pdes, Mathematische Annalen, 352 , Number1 (2012), 239–258.

[39]  S. Berhanu and J. Hounie, A Class of FBI Transforms, Communications inPartial Differential Equations, 37, (2012), 38–57.

[40]  S. Berhanu and J. Hounie, On vector fields in the plane with the reflectionproperty, Transactions of the AMS, 366, (2014), 1703–1723.

[41]  S. Berhanu, On analyticity and smoothness of solutions for a class of firstorder nonlinear pdes, PROMS Springer-Verlag, to appear.

[42]  S. Berhanu and J. Hounie, Boundary behavior of generalized analytic func-tions, Journal of Functional Analysis, 266, (2014), 4121–4149.

[43]  S. Berhanu and Ming Xiao, On the C∞ version of the reflection principle for mappings between CR manifolds, American Journal of Mathematics, 137,(2015), 1365–1400.

[44]  S. Berhanu, The F. and M. Riesz theorem for nonelliptic Vekua’s equations,Methods and Applications of Analysis, 21, (2014), 283–290.

[45]  S. Berhanu and Ming Xiao, On the regularity of CR mappings between CR manifolds of hypersurface type, Transactions of the AMS, 369, (2017), 6073–6086.

[46]  S. Berhanu and Abraham Hailu, Characterization of Gevrey regularity by aclass of FBI transforms, Novel Methods in Harmonic Analysis, Springer -Verlag (Birkhauser), 2, (2017), 451–482.

[47]  S. Berhanu and J. Hounie, The approximation theorem of Baouendi andTreves, Journal of Complex Variables and Elliptic Equations, 62, (2017),1425–1446.[48]  S. Berhanu and J. Hounie, A Hopf lemma for holomorphic functions in Hardyspaces and applications to CR mappings, Journal d’Analyse Mathematique,138, (2019), 835–855.

[49]  S. Berhanu and J. Hounie, A local Hopf lemma and unique continuation forthe Helmholtz equation, Communications in PDEs, 43, (2018,), 448–466.

[50]  S. Berhanu and Jemal Yusuf, Continuity of a class of FBI transforms on Sobolev spaces, Houston Journal of Mathematics, 46, No 3, (2020,), 797–808.

[51]  S. Berhanu, On holomorphic extendability and the strong maximum principle

for CR functions, Complex Analysis and its Synergies 6, 20, (2020).

[52]  S. Berhanu, Boundary unique continuation for a class of elliptic equations, American Journal of Mathematics, 143, (2021), 783–810.

[53]  S. Berhanu, Boundary unique continuation for the Laplace equation and the biharmonic operator, Communications in Analysis and Geometry, 31, Num- ber 1, (2023), 1–29.

[54]  S. Berhanu, A generalization of a microlocal version of Bochner’s theorem, Transactions of the AMS, 374, (2021), 5269–5285.

[55]  S. Berhanu, A local Hopf lemma and unique continuation for elliptic equa- tions, Advances in Mathematics, 389, (2021), 1–26.

[56]  S. Berhanu, Unique continuation for systems of first order pdes, Notices of the AMS, 68, Number 9, (2021).

[57]  S. Berhanu, A local Hopf lemma for the Kohn Laplacian on the Heisenberg group, Analysis and Mathematical Physics 12, 72 (2022).

[58]  S. Berhanu, Boundary unique continuation for elliptic real analytic differential operators, American Journal of Mathematics, to appear.

[59]  S. Berhanu and Xiaoshan Li, Rado’s theorem for CR functions on hypersur- faces, Journal of Geometric Analysis, https://doi.org/10.1007/s12220-024- 01763-x.

[60]  S. Berhanu, Unique continuation for continuous CR functions, preprint (2024).

[61]  S. Berhanu, A uniqueness theorem for elliptic equations and applications toCR mappings, preprint (2024).